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Abstract
In the case of the KP hierarchy where the dependent variable takes values in
an (arbitrary) associative algebra R, it is known that there are solutions which
can be expressed in terms of quasideterminants of a Wronski matrix which
solves the linear heat hierarchy. We obtain these solutions without the help of
quasideterminants in a simple way via solutions of matrix KP hierarchies (over
R) and by use of a Cole–Hopf transformation. For this class of exact solutions
we work out a correspondence with ‘weakly nonassociative’ algebras.

PACS numbers: 02.30.Ik, 05.45.Yv, 03.65.Fd

The generalization of the KP equation to the case where the dependent variable takes values in
a matrix algebra has already been considered long time ago in [1, 2], for example. The interest
in this equation, and more generally in ‘soliton equations’ where the dependent variable takes
values in any associative algebra (see also [3], and in particular [4, 5] for the KP case), is
partly due to the fact that there is an elegant way to generate from simple solutions of such
a matrix or operator equation complicated solutions of the corresponding scalar equation
[6–16]. Moreover, certain developments in string theory motivated the study of soliton
equations like the KP equation with the ordinary product of functions replaced by
a noncommutative (Groenewold–Moyal) star product (see [17–20] and references cited
therein)3.

3 In several publications on ‘Moyal-deformed’ soliton equations, the Moyal-product can be replaced almost
completely by any associative (noncommutative) product, since the specific properties of the Moyal-product are
not actually used. The algebraic properties of such equations are then simply those of (previously studied) matrix
versions of these equations. Exceptions are in particular [17–19] where enlarged hierarchies are considered which
appear specifically in the Moyal-deformed case. Multi-soliton solutions of the (enlarged) potential KP hierarchy with
Moyal-deformed product were obtained in [19] using a method which, in the commutative case, corresponds to the
well-known ‘trace method’ [21] (see also [5], appendix A6, and [22]).
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Surprisingly, many integrability features of the scalar KP equation and its hierarchy
generalize in some way to the ‘noncommutative’ version. In [23] (see also [24, 25]) expressions
for solutions of the ‘noncommutative’ potential KP (pKP) hierarchy were found in terms
of quasideterminants [26–31], thus achieving a close analogy with classical results for the
‘commutative’ pKP hierarchy (see [32, 33], for example)4. In this communication, we recover
these solutions in an elementary way without the use of quasideterminants, via the construction
of solutions of matrix pKP hierarchies, where now the matrices have entries in the respective
(noncommutative) associative algebra. Moreover, our analysis sheds light on the underlying
structure from different perspectives. Section 1 identifies a Cole–Hopf transformation as a
basic ingredient. Solutions of the ‘noncommutative’ pKP hierarchy obtained in this way
determine solutions of a certain system of ordinary differential equations. In section 2, we
show that conversely solutions of this system determine solutions of the pKP hierarchy. This
is achieved by use of results from a very general approach towards solutions of KP hierarchies,
developed in [15] (see also [37]). Section 3 explains why Wronski matrices enter the stage
under certain familiar additional conditions (‘rank 1 condition’ and shift operator). Here we
make closer contact with the recent work in [25]. Section 4 shows that the associated system
of ordinary differential equations can then be cast into the form of matrix Riccati equations
and makes contact with the Sato theory [38]. Finally, section 5 contains some further remarks
and an appendix draws some consequences for the ‘noncommutative’ discrete KP hierarchy.

1. Cole–Hopf transformation for noncommutative pKP hierarchies and related systems
of ordinary differential equations

We recall a result from [16] (see theorem 4.1). Although not explicitly stated there, it holds
for elements of an arbitrary associative algebra A with identity element I, over a field K of
characteristic zero. It is assumed that the elements depend smoothly or as formal power series
on independent variables t = (t1, t2, . . .). Let ∂ : A → A be a K-linear derivation which
commutes with the partial derivatives ∂tn .5

Proposition 1. If X, Y ∈ A solve the linear heat hierarchy

Xtn = ∂n(X), n = 1, 2, 3, . . . , (1)

(where Xtn = ∂tn(X)) and if

∂(X) = RX + QY (2)

with constant6 elements Q,R ∈ A, then

φ = YX−1 (3)

solves the pKP hierarchy in the algebra A with product A · B = AQB.

Remark. A functional representation of the pKP hierarchy in (A, ·) is given by �(µ) −
�(µ)−[λ] = �(λ) − �(λ)−[µ] with

�(λ) = λ−1(φ − φ−[λ]) − (φ − φ−[λ]) · φ − φt1 (4)

and the Miwa shift φ−[λ](t) = φ(t − [λ]) where [λ] = (λ, λ2/2, λ3/3, . . .) (see [16] and also
the references cited therein). Expansion in powers of the indeterminates λ,µ generates the
pKP hierarchy equations. The pKP hierarchy system is equivalent to

�(λ) = ϑ − ϑ−[λ] (5)

4 One link between integrable systems and quasideterminants is given by the fact that ‘noncommutative’ Darboux
transformations [34] can be compactly expressed in the form of a quasideterminant [25, 31, 35, 36].
5 The reader would not run into problems setting ∂ = ∂t1 in the following, because of (1) with n = 1.
6 An element Q ∈ A is called constant if it does not depend on the variables tn and satisfies ∂(Q) = 0.
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with some ϑ ∈ A. Under the assumptions of proposition 1, we have ϑ = φR (see the proof
of theorem 4.1 in [16]). In this restricted case, the hierarchy equations are thus determined by

(φ − φ−[λ])(λ
−1 − Qφ − R) − φt1 = 0. (6)

Equation (3) becomes a Cole–Hopf transformation if

Y = ∂(X), (7)

in which case condition (2) takes the form

(I − Q)∂(X) = RX. (8)

Proposition 2. If X ∈ A solves the linear heat hierarchy (1) and (8) with constant Q,R ∈ A,
then

W(i, j) = ∂i+1(X)X−1Rj i, j = 0, 1, . . . (9)

satisfy

W(i, j)tn = W(i + n, j) − W(i, j + n) −
n−1∑
k=0

W(i, k)QW(n − k − 1, j). (10)

Proof. By induction (8) leads to

∂n(X) = RnX +
n−1∑
k=0

RkQ∂n−k(X) n = 1, 2, . . . .

With its help and by use of (1) one easily verifies (10). �

Note that W(0, 0) = φ. Associated with this solution of the pKP hierarchy in the algebra
A with product A · B = AQB, we thus have, via (9), a solution {W(i, j)} of the system (10)
of ordinary differential equations. In the following section we prove the converse: whenever
we have a solution {W(i, j)} of the system (10), then W(0, 0) solves the pKP hierarchy (in
the algebra A with product A · B = AQB).

2. Weakly nonassociative algebras related to pKP solutions

Before recalling a central result from [15] (see also [37]), we need some definitions. An
algebra (A, ◦) (over a commutative ring) is called weakly nonassociative (WNA) if it is not
associative, but the associator7 (a, b◦c, d) vanishes for all a, b, c, d ∈ A. The middle nucleus
A

′ = {b ∈ A|(a, b, c) = 0 ∀a, c ∈ A}, which is an associative subalgebra, is then also an
ideal in A. With respect to an element ν ∈ A\A

′ we define the products a ◦1 b = a ◦ b and

a ◦n+1 b = a ◦ (ν ◦n b) − (a ◦ ν) ◦n b n = 1, 2, . . . . (11)

As a consequence of the WNA condition, these products only depend on the equivalence class
[ν] of ν in A/A

′.

Theorem [15]. Let A be any WNA algebra, the elements of which depend smoothly on
independent variables t1, t2, . . . , and let ν ∈ A\A

′ be constant. Then the flows of the system
of ordinary differential equations

φtn = −ν ◦n ν + ν ◦n φ + φ ◦n ν − φ ◦n φ n = 1, 2, . . . (12)

commute and any solution φ ∈ A
′ solves the pKP hierarchy in A

′.

7 The associator is defined as (a, b, c) = (a ◦ b) ◦ c − a ◦ (b ◦ c).
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Examples of WNA algebras are obtained as follows [15]. Let (A, ·) be any associative
algebra and L,R : A → A linear maps such that

[L,R] = 0, L(a · b) = L(a) · b, R(a · b) = a · R(b). (13)

It is convenient to write La and aR instead of L(a) and R(a). Augmenting A with a constant
element ν and setting

ν ◦ ν = 0, ν ◦ a = La, a ◦ ν = −aR, a ◦ b = a · b (14)

leads to a WNA algebra (A, ◦) with A
′ = A, provided that there exist a, b ∈ A such that

aR ◦ b �= a ◦ Lb. The latter condition ensures that the augmented algebra is not associative.
As a consequence, we obtain

ν ◦n a = Lna, a ◦n ν = −aRn, (15)

and

a ◦n b =
n−1∑
k=0

aRk · Ln−k−1b. (16)

Now (12) reads

φtn = Lnφ − φRn −
n−1∑
k=0

φRk · Ln−k−1φ n = 1, 2, . . . . (17)

Introducing

W(i, j) = LiφRj i, j = 0, 1, . . . , (18)

and acting on (17) by Li from the left and by Rj from the right, results in

W(i, j)tn = W(i + n, j) − W(i, j + n) −
n−1∑
k=0

W(i, k) · W(n − k − 1, j), (19)

assuming that the partial derivatives ∂tn commute with L and R.
Suppose now that we have a solution {W(i, j)} of the system (19). Then we can choose

A as the associative algebra generated by this set (with product ·) and define the maps L and
R via (18) and (13). It follows (by use of the theorem) that φ = W(0, 0) solves the pKP
hierarchy in (A, ·).

In fact, in the first section we have shown how a subclass of solutions to the pKP
hierarchy determines solutions {W(i, j)} of (19) in the case where the product in A is given
by A · B = AQB with a constant element Q ∈ A.

In particular, we have seen that the system (10) is a special case of the hierarchy (12) of
ordinary differential equations in a WNA algebra A, which according to the above theorem
determines solutions of the pKP hierarchy in A

′. An example of (10) appeared in [25] and this
will be the subject of the next section.

3. Solutions of noncommutative pKP hierarchies in terms of Wronski matrices

Let us now choose A as the algebra of N × N matrices with entries in a unital associative
algebra R and product A · B = AQB with a constant N × N matrix Q. Let ek be the N-
component vector with all entries zero except for the identity element in the kth row. Choosing
the rank 1 matrix

Q = eNeT
N (20)
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(where T means taking the transpose), any solution φ of the pKP hierarchy in (A, ·) determines
via

ϕ = eT
NφeN (21)

a solution of the pKP hierarchy in R. Choosing moreover

R = � =
N−1∑
k=1

ekeT
k+1, (22)

which is the ‘left shift’ (�e1 = 0 and �ek = ek−1 for k = 2, . . . , N ), condition (8) becomes(
I − eNeT

N

)
∂(X) = �X. (23)

This tells us that X is a Wronski matrix, i.e.

X = W(	) =




θ1 θ2 · · · θN

∂(θ1) ∂(θ2) · · · ∂(θN)

...
...

. . .
...

∂N−1(θ1) ∂N−1(θ2) · · · ∂N−1(θN)


 , (24)

with a row vector 	 = (θ1, . . . , θN) of elements of R. We simply write W instead of W(	)

in the following. The next result is an immediate consequence of proposition 1.

Proposition 3. If θ1, . . . , θN solve the linear heat hierarchy, i.e. 	tn = ∂n(	), n = 1, 2, . . . ,

and if the Wronski matrix W is invertible, then

φ = ∂(W)W−1 (25)

solves the pKP hierarchy in the algebra of N × N matrices with entries in R and product
A · B = AQB with Q defined in (20). Furthermore, � defined in (21) then solves the pKP
hierarchy in R.

According to section 1, φ given by (25) determines a solution of the system (10). As a
consequence,

Q(i, j) = −eT
NW(i, j)eN i, j = 0, 1, . . . (26)

solve the system

Q(i, j)tn = Q(i + n, j) − Q(i, j + n) +
n−1∑
k=0

Q(i, k)Q(n − k − 1, j), (27)

which appeared in [25]. From the above definition, we immediately find the following
expression in terms of quasideterminants:

Q(i, j) = −eT
N∂i+1(W)W−1eN−j =

∣∣∣∣∣
W eN−j

eT
N∂i+1(W) 0

∣∣∣∣∣ (28)

(see [28, 29, 31] for the notation). The authors of [25] used Darboux transformations and
properties of quasideterminants to derive these results. Knowing that (27) holds, we can also
refer directly to the arguments of section 2 (instead of referring to the matrix solution φ) to
conclude that

ϕ = −Q(0, 0) = −eT
N∂(W)W−1eN =

∣∣∣∣∣
W eN

eT
N∂(W) 0

∣∣∣∣∣ (29)
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solves the pKP hierarchy in R.8

Example. For N = 2 we have

W =
(

θ1 θ2

θ ′
1 θ ′

2

)
, W−1 =

((
θ1 − θ2θ

′
2
−1θ ′

1

)−1 (
θ ′

1 − θ ′
2θ2

−1θ1
)−1

(
θ2 − θ1θ

′
1
−1θ ′

2

)−1 (
θ ′

2 − θ ′
1θ1

−1θ2
)−1

)
, (30)

where θ ′
k = ∂(θk), and we need to assume that the inverses exist. This leads to

φ =
(

0 1(
θ ′′

1 − θ ′′
2 (θ ′

2)
−1θ ′

1

)(
θ1 − θ2(θ

′
2)

−1θ ′
1

)−1
ϕ

)
, (31)

where 1 stands for the identity element of R and

ϕ = (
θ ′′

1 − θ ′′
2 θ−1

2 θ1
)(

θ ′
1 − θ ′

2θ
−1
2 θ1

)−1
. (32)

Particular solutions of the heat hierarchy are9

θk =
M∑

j=1

Ak,j e
ξ(αj )Bk,j k = 1, . . . , N, (33)

with some M ∈ N, constant elements Ak,j , Bk,j , αj ∈ R and ξ(α) = ∑
m�1 tmαm. In the

‘commutative case’, one recovers N-soliton solutions in this way [33].

4. Linearization of the system (27)

Let us introduce the infinite matrix Q = (Q(i, j)), and the corresponding shift operator

� =




0 1 0 · · ·
0 0 1 0 · · ·
...

. . .
. . .

. . .


 . (34)

Then (27) can be expressed as a system of matrix Riccati equations,

Qtn = �nQ − Q(�T )n + QPnQ n = 1, 2, . . . , (35)

with P1 = e1eT
1 , where now eT

1 = (1, 0, . . .), and

Pn =
n−1∑
k=0

(�T )kP1�
n−k−1 n = 2, 3, . . . . (36)

Such matrix Riccati equations are well known to be linearizable. The corresponding linear
system is (

X
Y

)
tn

=
(

�T P1

0 �

)n (
X
Y

)
n = 1, 2, . . . , (37)

which determines a solution of the matrix Riccati system via Q = YX−1. Let us introduce

X̂m =
{
X−m m < 0
Ym+1 m � 0,

(38)

8 This also solves the technical problems met by the authors of [25] in their ‘direct approach’. For the use of computer
algebra to perform computations of the kind considered in section 5 of [25], see also the appendix of [37].
9 The exponentials are at least well defined as formal power series in t. Other solutions of the heat hierarchy are
given by linear combinations of Schur polynomials in t with constant coefficients in R.
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where Xm,Ym,m = 1, 2, . . . , are the rows of the matrices X ,Y (with entries in R). In terms
of the vector X̂ = (X̂m)m∈Z, this linear system takes the simple form

X̂tn = �̂nX̂ n = 1, 2, . . . , (39)

with the two-sided infinite shift matrix �̂. The solutions are given by X̂ (t) = eξ(�̂)X̂ (0) with
ξ(�̂) = ∑

n�1 tn�̂
n. All this makes contact with Sato’s formulation of the KP hierarchy as

flows on an infinite-dimensional Grassmann manifold (see in particular [38–40]), but here the
components of X̂ are taken from the (typically noncommutative) associative algebra R.

5. Further remarks

In the transition from (17) to (19) the linear maps L and R get hidden away and the infinite-
dimensional shift operator enters the stage. This is made explicit in section 4, under the
restrictions imposed in section 3. A system of the form (19), respectively (27), already
appeared in [41] (p 186) and in [40] (see in particular p 29) as a description of the (ordinary)
KP hierarchy as Sato flows on the infinite (universal) Grassmann manifold (by vector fields
associated with powers �̂n, n = 1, 2, . . . , of the shift operator), see also [42]. Later it
reappeared in [43, 44] as the ‘Sato system’ of the (ordinary) KP hierarchy10. From a practical
point of view, in particular when addressing exact solutions, it is in our opinion not of much
help and it is more convenient and simpler to deal with (17) (or the more general system
(12), see also [15, 37]). From a theoretical point of view, we have seen that the system (19)
indeed has its merits. In particular, it helped us bridging different approaches to solving a
(noncommutative) KP hierarchy.

Our work makes evident that the choice of the shift operator (R = � in section 3) is
rather special and there are others (see also [37]). We refer to the interesting discussion in
[45] concerning the role of the shift operator in Sato theory and corresponding alternatives.

Appendix. A note on the (noncommutative) discrete pKP hierarchy

The (noncommutative) potential discrete KP (pDKP) hierarchy in an associative algebra (A, ·)
(see [37, 46] and the references cited therein) is given by

�̂(µ)+ − �̂(µ)−[λ] = �̂(λ)+ − �̂(λ)−[µ], (A.1)

where

�̂(λ) = λ−1(φ − φ−[λ]) − (φ+ − φ−[λ]) · φ, (A.2)

and φ = (φk)k∈Z, φ+
k = φk+1, with φk ∈ A. (A.1) is equivalent to

�̂(λ) = ϑ+ − ϑ−[λ] (A.3)

with some ϑ = (ϑk)k∈Z, ϑk ∈ A. Taking the limit λ → 0 in (A.3) results in

φt1 = (φ+ − φ) · φ + ϑ+ − ϑ, (A.4)

by use of which (A.3) is turned into the pKP system (5). Under the assumptions of
proposition 1, we have ϑ = φR (see the remark in section 1), so that (A.4) takes the form

φt1 − (φ+ − φ)(Qφ + R) = 0. (A.5)

10 See equation (7.1) in [43] and (2.8) in [44]. The correspondence is given by W(i, j) �→ −Wi
j+1, respectively

Q(i, j) �→ Wi
j+1. The linearization presented in section 4 also appeared in these papers (where R is the commutative

algebra of functions of t). We believe that our presentation is somewhat improved.
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Assuming furthermore the Cole–Hopf restriction (7), we have

φt1 = ∂2(X)X−1 − φ2 = ∂2(X)X−1 − φQφ − φ(I − Q)φ. (A.6)

With the help of (8), which is (I − Q)φ = R, this becomes φt1 = ∂2(X)X−1 − φ(Qφ + R).
Inserting this expression into (A.4) leads to ∂2(X)X−1 = φ+(Qφ + R) = φ+∂(X)X−1, which
is

φ+ = ∂2(X)(∂(X))−1. (A.7)

Hence, any invertible solution X of the linear heat hierarchy, subject to (8) (with any constant
Q,R), determines a solution

φk = ∂k+1(X)(∂k(X))−1 (A.8)

of the pDKP hierarchy, restricted to non-negative integers k, provided that the inverse of ∂k(X)

exists for all k. If the inverse ∂−1 of ∂ and its powers can be defined on X, this extends to the
whole lattice. In particular, ‘Wronski solutions’ of pKP hierarchies as considered in section 3
extend in this way to solutions of the corresponding pDKP hierarchies.
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